Cursus / training:

Methode Formele Logica

©


14.2.2.

 

Argument-unificatie/ Kwantor-samenvoeging; In Conjunctie.





LQ14 - UNIF - CJ : (a1a)

Argument-unificatie/ Kwantor-samenvoeging; vanuit variabelen, meervoudig, naar variabele.


Via hernoeming (renaming).

U-kwantor samenvoeging, in Conjunctie, simpele vorm.


Met ongelijknamige predikaten.
(a1a-1):
Bijv.: [1] {(x A(x) ) , (y B( y) ) }   C2·[y

:=

x];   (cj.rei.) (x (A(x), B(x ) ) ) : geldig.
U-kwantor buitenplaatsing.
[2]  (snn.) (prenex): {x y (A(x), B(y ) ) } : geldig.
 (Skl.) {A(x), B(y)}
 [(x y ¬(A(x), B(y)) );]
 [(x y (¬A(x) ¬B(y)) );]
 [((x ¬A(x)) (y ¬B(y)) );]
 (Skl.) (¬A(

c

s

) ¬B(

d

s

))
 [

ref

{(A1,A2, ..), (B1,B2, ..)};]
 [

ref

{(A1,(B1,B2, ..).1)/ (A2,(B1,B2, ..).2)/ ..};]
 [

ref

{(A1,B1),(A1,B2), ..(A2,B1),(A2,B2), ..};]

Basale Syntactische reductie.
[3]   C2·[y

:=

x];   (cj.rei.) (A(x), B(x))
 [(x ¬(A(x ), B(x)))];
 [(x (¬A(x) ¬B(x)))];
 (Skl.) (¬A(

c

s

) ¬B(

c

s

))

 [

ref

{(A1,B1), (A2,B2), ..};]
 [

ref

{(A1,A2, ..), (B1,B2, ..)};]
: geldig.
[Bijv.: (d

=

2):
({(A1,A2), (B1,B2)} {(A1,B1), (A2,B2)} );
Distributie:
 ({(A1,B1),(A1,B2), (A2,B1),(A2,B2)}   (cj.db.rdc.) {(A1,B1), (A2,B2)} )].

Met behoud van Existentiële kwantificatie c.q. 'Skolem' constante.
(a1a-2):
Bijv.: [1] {(x A(x) ) , (y w C_(w,y) ) }   C2·[ w

:=

x];  (ren.,cj.db.rdc.) ( y x (A(x), C_(x,y ))) : geldig.
 (snn.) (prenex): [1] {y x w (A(x), C_(w, y) ) };
 (Skl.) {A(x), C_(w,

d

s)}
 [

ref

{(A1,C1.((1/2/ ..).d0)), (A1,C2.((1/2/ ..).d0)), .., (A2,C1.((1/2/ ..).d0)), (A2,C2.((1/2/ ..).d0)), ..};]
 [

ref

(compr.1)
{(A1,(C1.((1/2/ ..).d0),C2.((1/2/ ..).d0), ..))/ (A2,(C1.((1/2/ ..).d0),C2.((1/2/ ..).d0), ..))/ ..};]
 [

ref

(compr.2)
{(A1,A2, ..), (C1.((1/2/ ..).d0), C2.((1/2/ ..).d0), ..)};]

U-kwantor samenvoeging, waarna E-kwantor Buitenplaatsing, Volgorde-behoudend.
Basale Syntactische doublure-eliminatie:
[2]  ·[w

:=

x];   (ren.,cj.db.rdc.) (A(x), C_(x,

d

s ) )
 [

ref

{(A1,C1.((1/2/ ..).d0)), (A2,C2.((1/2/ ..).d0)), ..};]
 [

ref

(compr.)
{(A1,A2, ..), (C1.((1/2/ ..).d0), C2.((1/2/ ..).d0), ..)};]
: geldig.
 (y x (A(x), C_(x,y))).

(a1a-3):
Bijv.: [1] ((x A(x)), (w y C_(w,y)))  ·[w

:=

x];  (ren.,cj.db.rdc.) { x y (A(x), C_(x,y ))} : geldig.
 (Skl.) [1] (A(x), C_(w,

g

s

(w)))
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .., C1.((1/2/ ..).1),C2.((1/2/ ..).2), ..};]

(snn.) (prenex) (w y x (A(x), C_(w,y )));
[2]  D2·[x

:=

w];   (ren.,cj.db.rdc.) {A(x), C_(x,

g

s

(x))}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .., C1.((1/2/ ..).1),C2.((1/2/ ..).2), ..};]
: geldig.


(a1b)

Argument-unificatie/ Kwantor-samenvoeging; vanuit variabele, meervoudig, naar 'Skolem ' constante.



(a1b-1):
Bijv.: {(x A(x) ) , (y B(y ) ) }  (

degres

)
(cj.rdc.;dj.xpn.) ( x (A(x), B(x) ) ) : geldig.
U-kwantor buitenplaatsing.
 (snn.) (prenex): {x y (A(x), B(y))}  (

degres

)
(cj.rdc.;dj.xpn.) (x (A(x), B( x))) : geldig.
 (Skl.) [1] {A(x), B(y)}
 [

ref

{(A1,A2, ..), (B1,B2, ..)};]
 [

ref

(distr.1)
{(A1,(B1,B2, ..).1)/ (A2,(B1,B2, ..).2)/ ..};]
 [

ref

(distr.2)
{(A1,B1),(A1,B2), ..(A2,B1),(A2,B2), ..};]

[2a] Route 1.
[2a1]   ·[y

:=

d

d];   (

degres

)
(cj.rdc.:inst.1) (A(x), B(

d

d))
 [

ref

{((A1,A2, ..),(B*).d1)};]
 [

ref

(distr.1)
{(A1,(B*).d1),(A2,(B*).d1), ..};]
: geldig.
[2a2]   ·[x

:=

d

d];   (

degres

)
(cj.rdc.:inst.2) (A(

d

d), B(

d

d))
 [

ref

{(A*).d1, (B*).d1};]
: geldig.
[2a3]  ·[

d

d:=

d

s

];  (

degres

)
(dj.xpn.:Sk+1) (A(

d

s

), B(

d

s

))
 [

ref

{(A1/A2/ ..).d0, (B1/B2/ ..).d0};]
 [

ref

{(A1,B1)/ (A2,B2)/ ..};]
: geldig.
Zie verder: E-kwantor splitsing, in Conjunctie, simpele vorm, [1-2] (geldig).

[2b] Route 2.
[2b1]  ·[y

:=

g

d(z )];  (

degres

)
(cj.rdc.:inst.1) (A(x), B(

g

d(z)))
 [

ref

{A1,A2, .. (B*).1,(B*).2, ..};]
 [

ref

(distr.1)
{(A1,(B*).1), (A1,(B*).2), .., (A2,(B*).1), (A2,(B*).2), ..};]
: geldig.
[2b2]  ·[x

:=

g

d(z); z

:=

x];  (

degres

)
(cj.rdc.:inst.2) (A(

g

d(x)), B(

g

d(x)))
 [

ref

{((A*).1,(B*).1), ((A*).2,(B*).2), ..};]
 [

ref

{(A*).1,(A*).2, .. (B*).1,(B*).2, ..};]
: geldig.
[2b3]  ·[

g

d(x)

:=

g

s

(x)];  (

degres

)
(dj.xpn.:Sk+1) (A(

g

s

(x)) B(

g

s

(x)))
 [

ref

{((A1/A2/ ..).1, (B1/B2/ ..).1), ((A1/A2/ ..).2, (B1/B2/ ..).2), ..};]
: geldig.
[2b4]  ·[x

:=

d

d];   (

degres

)
(cj.rdc.:inst.) (A(

g

s

(

d

d)) B(

g

s

(

d

d)) )
 [

ref

{((A1/A2/ ..).d1), ((B1/B2/ ..).d1), ..};]
: geldig.
[2b5(=2a3)]  ·[

g

s

(

d

d)

:=

d

s

];   (syn.rdc.:Sk±1,snn.) (A(

d

s

), B(

d

s

))
 [

ref

{((A1/A2/ ..).d0), ((B1/B2/ ..).d0)};]
 [

ref

{(A1,B1)/ (A2,B2)/ ..};]
: geldig.
Zie verder: E-kwantor splitsing, in Conjunctie, simpele vorm, [1-2] (geldig).

(a2a)

Argument-unificatie/ Kwantor-samenvoeging; vanuit variabele, meervoudig, naar 'Skolem ' functie.



(a2a-1):
Bijv.: [1] {(x A(x) ) , (y w C_(w,y) ) }   C2·[ w

:=

x];  (

degres

)(dj.xpn.)
(x y (A(x), C_(x, y) ) ) : geldig.
 (snn.) (prenex): [1] (y x w (A(x), C_(w, y)));
 (Skl.)  (Skl.) [1] {A(x), C_(w,

d

s))}
 [

ref

{(A1,C1.((1/2/ ..).d0)), (A1,C2.((1/2/ ..).d0)), .. (A2,C1.((1/2/ ..).d0)), (A2,C2.((1/2/ ..).d0)), ..};]
 [

ref

(compr.2x)
{A1,A2, .. C1.((1/2/ ..).d0), C2.((1/2/ ..).d0), ..};]

De C term (Literaal) is hier wegens Conjunctie onafhankelijk interpreteerbaar.
In dit geval althans omdat de conjuncte predicaties geen gemeenschappelijke existentële variabelen hebben.
[2a] Route 1.
Met basale 'EU-UE' kwantor volgordeverandering.
Basale Syntactische doublure-eliminatie:
[2a1]   C2·[w

:=

x];   (cj.db.rdc.:ren.,unif.) (A(x), C_(x,

d

s ) )
 [

ref

{(A1,C1.((1/2/ ..).d0)), (A2,C2.((1/2/ ..).d0)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).d0), C2.((1/2/ ..).d0), ..};]
: geldig.
 (prenex) (y x (A(x), C_(x,y))).
Lokale Disjunctieve expansie:
[2a2(=2b2;=2c2)]  ·[

d

s

:=

g

s

(x)];  (

degres

)(dj.xpn.:Sk±1)
(A(x), C_(x,

g

s(x) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

[2b] Route 2.
Met lokale 'EU-UE' kwantor volgordeverandering.
Lokale Disjunctieve expansie:
[2b1]  ·[

d

s

:=

g

s

(w)];  (

degres

)(dj.xpn.:Sk±1)
(A(x), C_(w,

g

s

(w ) )
 [

ref

{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 {(x A(x) ) , ( w y C_(w,y) ) };
 (snn.) (prenex) (w y x (A(x), C_(w,y ))).
Basale Conjunctieve reïteratie:
[2b2(=2a2)]   C2·[w

:=

x];   (cj.db.rdc.:ren.,unif.) (A(x), C_(x,

g

s

(x) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

[2c] Route 3.
Via - volgordebehoudende - prenex vorm.
U-kwantor buitenplaatsing; E-kwantor buitenplaatsing.
Lokale Disjunctieve expansie:
[2c1]  ·[

d

s

:=

g

s

(x)];  (

degres

)(dj.xpn.:Sk±1)
(A(x), C_(w,

g

s(x) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A1,C2.((1/2/ ..).1)), .. (A2,C1.((1/2/ ..).2)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

{A1,A2, .. C1.((1/2/ ..).1), C1.((1/2/ ..).2), .. C2.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 {x y (A(x) , (w C_(w,y) ) ) };
 (snn.) (prenex) {x y w (A(x), C_(w,y ) ) };
Lokale Conjunctieve reductie:
[2c2(=2a2;2b2)]   C2·[w

:=

x];   (

degres

)
(cj.rdc.:ren.,unif.) (A(x), C_( x,

g

s

(x) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

[2d] Route 4.
Lokale Disjuncte expansie:
[2d1]  ·[

d

s

:=

g

s

(z)];  (

degres

)
(dj.xpn.) {A(x), C_(w,

g

s(z) )}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A1,C1.((1/2/ ..).2)), .. (A1,C2.((1/2/ ..).1)), (A1,C2.((1/2/ ..).2)), ..
(A2,C1.((1/2/ ..).1)), (A2,C1.((1/2/ ..).2)), .. (A2,C2.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C1.((1/2/ ..).2), ..
C2.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 {(x A(x) ) , ( z y w C_(w,y) ) };
 (snn.) (prenex) (z y x w (A(x), C_(w,y))).
Lokale Conjuncte reductie:
[2d2(=2b1)]  ·[z

:=

w];   (

degres

)
(cj.rdc.:ren.) {A(x), C_(w ,

g

s(w))}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A1,C2.((1/2/ ..).2)), .. (A2,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 {(x A(x) ) (w y C_(w,y) ) };
 (snn.) (prenex) (w y x (A(x), C_(w,y ))).
Basale Syntactische doublure-eliminatie:
[2d3(=2a2;=2b2;=2c2)]  ·[w

:=

x];   (cj.rei.;ren.) {A(x), C_(x,

g

s(x ))}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

[2e] Route 5.
Disjuncte expansie:
[2e1]  ·[

d

s

:=

g

s

(w,z)];  (

degres

)
(dj.xpn.) {A(x), C_(w,

g

s(w,z) )}
 [

ref

{(A1,C1.((1/2/ ..).1.1)), (A1,C1.((1/2/ ..).1.2)), .. (A1,C2.((1/2/ ..).2.1)), (A1,C2.((1/2/ ..).2.2)), ..
(A2,C1.((1/2/ ..).1.1)), (A2,C1.((1/2/ ..).1.2)), .. (A2,C2.((1/2/ ..).2.1)), (A2,C2.((1/2/ ..).2.2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1.1), C1.((1/2/ ..).1.2), ..
C2.((1/2/ ..).2.1), C2.((1/2/ ..).2.2), ..};]
: geldig.
 {(x A(x) ) (w z y (A(x), C_(w,y) ) };
 (snn.) (prenex) (w z y x (A(x),C_(w,y))).
Conjuncte reductie:
[2e2]  ·[z

:=

w];   (

degres

)
(cj.rdc.:ren.) {A(x), C_(w ,

g

s(w,w))}
 [

ref

{(A1,C1.((1/2/ ..).1.1)), (A1,C2.((1/2/ ..).2.2)), .. (A2,C1.((1/2/ ..).1.1)), (A2,C2.((1/2/ ..).2.2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1.1), C2.((1/2/ ..).2.2), ..};]
: geldig.
 {(x A(x) ) , ( w y C_(w,y) ) };
 (snn.) (prenex) (w y x (A(x), C_(w,y ))).
Lokale Syntactische reductie (synonymie):
[2e3(=2b1;=2d2)]  C2·[

h

s

(w ,w)

:=

g

s

(w)];   (syn.rdc.:Sk±1,snn.) (A(x), C_(w,

g

s

(w) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A1,C2.((1/2/ ..).2)), .. (A2,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1.1), C2.((1/2/ ..).2.2), ..};]
: geldig.
 {(x A(x) ) , ( w y C_(w,y) ) };
 (snn.) (prenex) (w y x (A(x) C_(w,y))) : geldig.
Basale Syntactische doublure-eliminatie:
[2e4(=2a2;=2b2;=2c2;=2d3)]  ·[w

:=

x];   (cj.rei.;ren.) {A(x), C_(x,

g

s(x ))}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1)), C2.((1/2/ ..).2)), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

[2f] Route 6 (ongeldige uitkomst).
Lokale Syntactische expansie (synonymie):
[2f1]  ·[

d

s

:=

g

s

(

d

d)];   (syn.rdc.:Sk±1,snn.) {A(x), C_(w,

g

s(

d

d ) )}
 [

ref

{(A1,C1.((1/2/ ..).d1)), (A1,C2.((1/2/ ..).d1)), .. (A2,C1.((1/2/ ..).d1)), (A2,C2.((1/2/ ..).d1)), ..};]
 [

ref

(compr.)
{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 {(x A(x) ) , ( z y w ((z

=

d

d) C_(w,y ) ) ) }.
 (snn.) (prenex) (z y x w (A(x), ((z

=

d

d) C_( w,y) ) ) ).
Lokale Conjunctieve expansie (generalisatie):
[2f2(=2b1;=2d2;=2e3)]  ·[

d

d

:=

w];  (

upgrad

)
(cj.xpn.:gnr.) {A(x ), C_(w,

g

s(w))}
 [

ref

{(A1,C1.((1/2/ ..).1)), (A1,C2.((1/2/ ..).2)), .. (A2,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

{A1,A2, .. C1.((1/2/ ..).1)), C2.((1/2/ ..).2)), ..};]
:

ongeldig

.
 (prenex) x w z (A(x), C_(w,z ))).
Basale Conjuncte reïteratie:
[2f3(=2a2;=2b2;=2c2;=2d3;=2e4)]  ·[w

:=

x];  (

degres

)(cj.rei.;snn.)
(A(x), C_(x,

g

s(x) )
 [

ref

{(A1,C1.((1/2/ ..).1)), (A2,C2.((1/2/ ..).2)), ..};]
 [

ref

{A1,A2, .. C1.((1/2/ ..).1), C2.((1/2/ ..).2), ..};]
: geldig.
 (prenex) (x y (A(x), C_(x,y))).

(a2b)

Argument-unificatie/ Kwantor-samenvoeging; vanuit variabele, meervoudig, via 'Skolem' functie.



(a2b-1):
Bijv.: [1] {(x A(x), (y B(y ))}  (

degres

)
(cj.rdc.;dj.xpn.) ( x (A(x), B(x)) : geldig.
 (snn.) (prenex) {x y (A(x), B(y))}  (

degres

)
(cj.rdc.;dj.xpn.) (x (A(x), B( x))) : geldig.
 (Skl.) [1] {A(

c

s

), B(y )}
 [

ref

{((A1/A2/ ..).c0,B1),((A1/A2/ ..).c0,B2), ..};]
 [

ref

{(A1/A2/ ..).c0, B1,B2, ..};]

[2a] Route 1.
Lokale Conjunct-Disjunct reductie:
[2a1]  ·[y

:=

c

s

];  (

degres

)
(cj.rdc.:inst.) (A(

c

s

), B(

c

s

)
 [

ref

{((A1/A2/ ..).c0), ((B1/B2/ ..).c0)};]  [

ref

{(A1,B1)/ (A2,B2)/ ..};]
: geldig.

[2b] Route 2 (ongeldige uitkomst).
Lokale Conjuncte reductie:
[2b1]  ·[y

:=

d

d];   (

degres

)
(cj.rdc.:inst.) (A(

c

s

), B(

d

d);
 [

ref

{((A1,(B*).d1)/(A2,(B*).d1)/ ..).c0};]  [

ref

{(A1/A2/ ..).c0, (B*).d1};]
: geldig.
Lokale Disjuncte expansie:
[2b2]  ·[

d

d

:=

d

s

];  (

degres

)
(dj.xpn.:Sk+1) (A(

c

s

), B(

d

s

))
 [

ref

{(A1/A2/ ..).c0, (B1/B2/ ..).d0};]
 [

ref

{(A1,B1)/(A1,B2)/ .. (A2,B1)/(A2,B2)/ ..};]
: geldig.
Zie verder: E-kwantor samenvoeging, in Conjunctie, simpele vorm, [1-2] (

ongeldig

).

(a3)

Argument-unificatie/ Kwantor-samenvoeging; vanuit variabele, meervoudig, naar 'Skolem' constanten.



(a3-1):
Bijv.: {(x A(x), (y B(y ))}  (

degres

)
(cj.rdc.;dj.xpn.;dj.rdc.) ( y (A(y), B(y)) : geldig.
 (snn.) (prenex) [1] {x y (A(x, B(y))};
 (Skl.) [1] {A(x), B(

d

s

)}
 [

ref

{A1,A2, .., (B1/B2/ ..).d0)};]

[2a] Route 1.
Lokale Conjunct-Disjunct reductie:
[2a1]  ·[x

:=

c

s

];  (

degres

)
(cj.-dj.rdc.:inst.) (A(

c

s

), B(

c

s

)
 [

ref

{((A1/A2/ ..).c0), ((B1/B2/ ..).c0)};]
 [

ref

{(A1,B1)/ (A2,B2)/ ..};]
: geldig.

[2b] Route 2 (ongeldige uitkomst).
Lokale Conjuncte reductie:
[2b1]  ·[x

:=

c

d];   (

degres

)
(cj.rdc.:inst.) (A(

c

d), B(

d

s

)
 [

ref

{(A*).c1, (B1/B2/ ..).d0};]  [

ref

{(((A*).c1/B1), ((A*).c1/B2), ..).d0};]
: geldig.
Lokale Disjuncte expansie:
[2b2]  ·[

c

d

:=

c

s

];  (

degres

)
(cj.rdc.;dj.xpn.) (A(

c

s

), B(

d

s

))
 [

ref

{((A1/A2/ ..).c0), ((B1/B2/ ..).d0)};]
 [

ref

(distr.)
{(A1,B1)/(A1,B2)/ .. (A2,B1)/(A2,B2)/ ..};]
: geldig.
Zie verder: E-kwantor samenvoeging, in Conjunctie, simpele vorm, [1-2] (

ongeldig

).

[2c] Route 3 (ongeldige uitkomst).
Via directe prenex vorm (werkt niet).
[2c1]  ·[

d

s

:=

g

s

(x)];  (

degres

)
(dj.xpn.:Sk+1) {A(x), B(

g

s

(x))}
 [

ref

{(A1,(B1/B2/ ..).1), (A2,(B1/B2/ ..).2), ..};]
: geldig.
 (snn.) (prenex) {x y (A(x), B(y))};
[2c2]  ·[x

:=

c

d];   (

degres

)
(cj.rdc.:inst.) (A(

c

d), B(

g

s

(

c

d)))
 [

ref

{(A*).c1, (B1/B2/ ..).c1};]
: geldig.
Syntactische reductie (synonymie):
[2c3]  ·[

g

s

(

c

d)

:=

e

s

];   (,syn.rdc.:Sk±1,snn.) (A(

c

d), B(

e

s

))
 [

ref

{(A*).c1, (B1/B2/ ..).e0};]
: geldig.
[2c4]  ·[

c

d

:=

c

s

];  (

degres

)
(dj.xpn.) (A(

c

s

), B(

e

s

))
 [

ref

{(A1/A2/ ..).c0, (B1/B2/ ..).e0};]
 [

ref

(distr.)
{(A1,B1)/(A1,B2)/ .. (A2,B1)/(A2,B2)/ ..};]
: geldig.
Zie verder: E-kwantor samenvoeging, in Conjunctie, simpele vorm, [1-2] (

ongeldig

).

E-kwantor samenvoeging, in Conjunctie, simpele vorm.



Met ongelijknamige predikaten.
(a3-2):
'Er is een ding A, èn er is een ding B', wordt: 'Er is een ding dat A èn (tegelijk) B is'.
Bijv.: [1] {(x A(x) ) , (y B( y) ) }   C2·[y

:=

x];   (x (A(x), B(x) ) ) :

ongeldig

.
 (snn.) (prenex) {x y (A(x), B(y) ) };
 (Skl.) {A(

c

s

), B(

d

s

)}
 [(x y ¬(A(x), B(y)) );]
 [(x y (¬A(x) ¬B(y)) );]
 [((x ¬A(x)) (y ¬B(y)) );]
 [

ref

{(A1/A2/ ..).c0, (B1/B2/ ..).d0};]
 [

ref

{(A1,B1)/(A1,B2)/ ..(A2,B1)/(A2,B2)/ ..};]
 [

ref

(compr.)
((A1,(B1/B2/ ..))/ (A2,(B1/B2/ ..)) ..);]
 [

ref

(compr.)
{(A1/A2/ ..), (B1/B2/..)};]

 [Bijv.: {{A1,B2}, {A2,B3}};]
[2]  C2·[

d

s

:=

c

s];  (

upgrad

)
(dj.rdc.) (A(

c

s), B(

c

s));
 [(x (A(x), B(x) ) );
 [(x ¬(A(x ), B(x)))];
 [(x (¬A(x) ¬B(x)))];

 [

ref

{(A1/A2/ ..).c0, (B1/B2/ ..).c0};]
 [

ref

{(A1,B1)/ (A2,B2)/ ..};]
:

ongeldig

.
 [Bijv.: {{A1,B1}/ {A3,B3}};]

Aanvullende bewijsvoering.


Zie verder elders.

(a3-3):
Bijv.: [1] {(y A(y)) , (z x C_(x,z))}   C2·[ z

:=

y];  (

upgrad

)
(dj.rdc.) (y (A(y) , (x C_(x,y))) ) :

ongeldig

.
E-kwantor buitenplaatsing; U-kwantor buitenplaatsing.
 (snn.) (prenex) [1] {y z x (A(y), C_(x, z)) }   C2·[z

:=

y];   (

upgrad

)
(dj.rdc.) ( y x (A(y), C_(x,y ))) :

ongeldig

.
 (Skl.) [1] {A(

c

s), C_(x,

d

s)}
 [

ref

{(A1/A2/ ..).c0,C1.((1/2/ ..).d0)), (A1/A2/ ..).c0,C2.((1/2/ ..).d0)), ..};]
 [

ref

{(A1/A2/ ..).c0, C1.((1/2/ ..).d0), C2.((1/2/ ..).d0), ..};]
 [

ref

{(A1/A2/ ..), (C1.1/C1.2/ ..), (C2.1/C2.2/ ..), ..};]

[2]  C2·[

d

s

:=

c

s];  (

upgrad

)
(dj.rdc.) (A(

c

s), C_(x,

c

s))
 [

ref

{(A1/A2/ ..).c0,C1.((1/2/ ..).c0)), (A1/A2/ ..).c0,C2.((1/2/ ..).c0)), ..};]
 [

ref

{(A1,(C1.1,C2.1, ..))/ (A2,(C2.2,C2.2, ..))/ ..};]
:

ongeldig

.

(a3-4):
Bijv.: [1] {(y A(y) ) , (x z C_(x,z) ) }   C2·[ z

:=

y];  (

degres

)
(dj.xpn.;dj.rdc.) (x y (A(y ), C_(x,y))) :

ongeldig

.
 (snn.) (prenex) [1] {y x z (A(y), C_(x, z)) };
 (Skl.) [1] {A(

c

s), C_(x,

g

s(x))}
 [

ref

{((A1/A2/..).c0,C1.((1/2/ ..).1g)), ((A1/A2/..).c0,C2.((1/2/ ..).2g)), ..};]
 [

ref

{(A1/A2/..).c0, C1.((1/2/ ..).1g), C2.((1/2/ ..).2g), ..};]

De A term (Literaal) is hier wegens Conjunctie onafhankelijk interpreteerbaar.
In dit geval althans omdat de conjuncte predicaties geen gemeenschappelijke existentële variabelen hebben.
Een Skolem constante, zeg

c

s, in een éénplaatsige (conjuncte) predicatie is substitueerbaar - onder parafrase - door een nieuw ingevoerde Skolem functie, zeg

f

s(y), met een argumentlijst van willekeurige lengte met uitsluitend (universele) variabele (n) als argument(en).
Deze substitueerbaarheid (afleidingsrelatie) is dus wederkerig.
Lokale Syntactische reductie (synonymie):
[2]  C1·[

c

s

:=

f

s(y)];  (syn.xpn.:Sk±1,snn.) (A(

f

s(y)), C_(x,

g

s(x)))
 [

ref

{((A1/A2/..).1f,C1.(1/2/ ..)).1g, ((A1/A2/..).1f,C2.(1/2/ ..)).2g, ..
((A1/A2/..).2f,C1.(1/2/ ..)).1g, ((A1/A2/..).2f,C2.(1/2/ ..)).2g, ..};]
 [

ref

{(A1/A2/..).1f, (A1/A2/..).2f, .. C1.((1/2/ ..).1g), C2.((1/2/ ..).2g), ..};]
: geldig.
Basale Syntactische reductie (synonymie):
[3]  C1·[y

:=

x]   (syn.rdc.:ren.,snn.) (A(

f

s(x)), C_(x ,

g

s(x)))
 [

ref

{((A1/A2/..).1f,C1.(1/2/ ..)).1g, ((A1/A2/..).2f,C2.(1/2/ ..)).2g, ..};]
 [

ref

{(A1/A2/..).1f, (A1/A2/..).2f, .. C1.((1/2/ ..).1g), C2.((1/2/ ..).2g), ..};]
: geldig.
[4]  C2·[

g

s(x)

:=

f

s(x)];  (

upgrad

)
(dj.rdc.) (A(

f

s(x)), C_(x,

f

s(x)))
 [

ref

{((A1/A2/..).1f,C1.(1/2/ ..)).1f), ((A1/A2/..).2f,C2.(1/2/ ..)).2f), ..};]
 [

ref

{(A1/A2/..).1f, (A1/A2/..).2f, .. C1.((1/2/ ..).1f), C2.((1/2/ ..).2f), ..};]
 [

ref

{(A1,C1.1)/ (A2,C1.2)/ ..).1f, (A1,C2.1)/ (A2,C2.2)/ ..).2f, ..};]
:

ongeldig

.

Bewijs via minimaal domein.


Bijv.: (d

=

2):
(((A1/A2).1f, (A1/A2).2f)/ ((C1.1/C1.2).1g, (C2.1/C2.2).2g));
 [Bijv.: {((A1).1f, ((A2).2f)/, ((C1.2).1g, (C2.1).2g)};]
 (snn.) (((A1/A2).1f, (A1/A2).2f)/ ((C1.1/C1.2).1f, (C2.1/C2.2).2f)) :

ongeldig

.
 [Bijv.: {((A1).1f, (A2).2f)/ ((C1.2).1f, (C2.1).2f)};]

C.P. van der Velde © 2004, 2016, 2019.